11 research outputs found

    Closed-loop approaches for innovative neuroprostheses

    Get PDF
    The goal of this thesis is to study new ways to interact with the nervous system in case of damage or pathology. In particular, I focused my effort towards the development of innovative, closed-loop stimulation protocols in various scenarios: in vitro, ex vivo, in vivo

    Neuromechanical Biomarkers for Robotic Neurorehabilitation

    Get PDF
    : One of the current challenges for translational rehabilitation research is to develop the strategies to deliver accurate evaluation, prediction, patient selection, and decision-making in the clinical practice. In this regard, the robot-assisted interventions have gained popularity as they can provide the objective and quantifiable assessment of the motor performance by taking the kinematics parameters into the account. Neurophysiological parameters have also been proposed for this purpose due to the novel advances in the non-invasive signal processing techniques. In addition, other parameters linked to the motor learning and brain plasticity occurring during the rehabilitation have been explored, looking for a more holistic rehabilitation approach. However, the majority of the research done in this area is still exploratory. These parameters have shown the capability to become the "biomarkers" that are defined as the quantifiable indicators of the physiological/pathological processes and the responses to the therapeutical interventions. In this view, they could be finally used for enhancing the robot-assisted treatments. While the research on the biomarkers has been growing in the last years, there is a current need for a better comprehension and quantification of the neuromechanical processes involved in the rehabilitation. In particular, there is a lack of operationalization of the potential neuromechanical biomarkers into the clinical algorithms. In this scenario, a new framework called the "Rehabilomics" has been proposed to account for the rehabilitation research that exploits the biomarkers in its design. This study provides an overview of the state-of-the-art of the biomarkers related to the robotic neurorehabilitation, focusing on the translational studies, and underlying the need to create the comprehensive approaches that have the potential to take the research on the biomarkers into the clinical practice. We then summarize some promising biomarkers that are being under investigation in the current literature and provide some examples of their current and/or potential applications in the neurorehabilitation. Finally, we outline the main challenges and future directions in the field, briefly discussing their potential evolution and prospective

    Small-World Propensity Reveals the Frequency Specificity of Resting State Networks

    Get PDF
    Goal: Functional connectivity (FC) is an important indicator of the brain's state in different conditions, such as rest/task or health/pathology. Here we used high-density electroencephalography coupled to source reconstruction to assess frequency-specific changes of FC during resting state. Specifically, we computed the Small-World Propensity (SWP) index to characterize network small-world architecture across frequencies. Methods: We collected resting state data from healthy participants and built connectivity matrices maintaining the heterogeneity of connection strengths. For a subsample of participants, we also investigated whether the SWP captured FC changes after the execution of a working memory (WM) task. Results: We found that SWP demonstrates a selective increase in the alpha and low beta bands. Moreover, SWP was modulated by a cognitive task and showed increased values in the bands entrained by the WM task. Conclusions: SWP is a valid metric to characterize the frequency-specific behavior of resting state networks. ispartof: IEEE Open Journal of Engineering in Medicine and Biology status: accepte

    Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering.

    Get PDF
    Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system

    A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks

    Get PDF
    Recent advances in bioelectronics and neural engineering allowed the development of brain machine interfaces and neuroprostheses, capable of facilitating or recovering functionality in people with neurological disability. To realize energy-efficient and real-time capable devices, neuromorphic computing systems are envisaged as the core of next-generation systems for brain repair. We demonstrate here a real-time hardware neuromorphic prosthesis to restore bidirectional interactions between two neuronal populations, even when one is damaged or missing. We used in vitro modular cell cultures to mimic the mutual interaction between neuronal assemblies and created a focal lesion to functionally disconnect the two populations. Then, we employed our neuromorphic prosthesis for bidirectional bridging to artificially reconnect two disconnected neuronal modules and for hybrid bidirectional bridging to replace the activity of one module with a real-time hardware neuromorphic Spiking Neural Network. Our neuroprosthetic system opens avenues for the exploitation of neuromorphic-based devices in bioelectrical therapeutics for health care

    Comparative analysis of inverse kinematics methodologies to improve the controllability of rehabilitative robotic devices

    No full text
    The solution of the inverse kinematics problem in multi-degrees of freedom robots has been tackled, through the last three decades, by several different approaches including analytical, geometrical, differential and numerical methods. All these techniques present their own advantages and drawbacks. However, a guideline on which approach is better to follow, depending on the kind of task to perform and the type of robotic device used, is still missing. In this work, a quantitative comparative analysis of three different inverse kinematics methodologies for the control of rehabilitative robotic devices is proposed, with aim of devising best practices and guidelines for the selection of the most suitable approach. The analyzed methodologies are implemented and numerically tested on two actual devices, specifically an upper-limb exoskeleton and an upper-limb prosthetic arm

    Real-time detection of bursts in neuronal cultures using a Neuromorphic Auditory Sensor and Spiking Neural Networks

    No full text
    The correct identi cation of burst events is crucial in many scenarios, ranging from basic neuroscience to biomedical applications. However, none of the burst detection methods that can be found in the literature have been widely adopted for this task. As an alternative to conventional techniques, a novel neuromorphic approach for real-time burst detection is proposed and tested on acquisitions from in vitro cultures. The system consists of a Neuromorphic Auditory Sensor, which converts the input signal obtained from electrophysiological recordings into spikes and decomposes them into di erent frequency bands. The output of the sensor is sent to a trained spiking neural network implemented on a SpiNNaker board that discerns between bursting and non-bursting activity. This data-driven approach was compared with 8 di erent conventional spike-based methods, addressing some of their drawbacks, such as being able to detect both high and low frequency events and working in an online manner. Similar results in terms of number of detected events, mean burst duration and correlation as current state-ofthe- art approaches were obtained with the proposed system, also bene ting from its lower power consumption and computational latency. Therefore, our neuromorphic-based burst detection paves the road to future implementations for neuroprosthetic applications.Spanish Ministry of Education, Culture and Sport "Formación de Personal Universitario Scholarship"European Regional Development Fund COFNET TEC2016-77785-

    Small-world propensity reveals the frequency specificity of resting state networks

    No full text
    Goal: Functional connectivity (FC) is an important indicator of the brain's state in different conditions, such as rest/task or health/pathology. Here we used high-density electroencephalography coupled to source reconstruction to assess frequency-specific changes of FC during resting state. Specifically, we computed the Small-World Propensity (SWP) index to characterize network small-world architecture across frequencies. Methods: We collected resting state data from healthy participants and built connectivity matrices maintaining the heterogeneity of connection strengths. For a subsample of participants, we also investigated whether the SWP captured FC changes after the execution of a working memory (WM) task. Results: We found that SWP demonstrates a selective increase in the alpha and low beta bands. Moreover, SWP was modulated by a cognitive task and showed increased values in the bands entrained by the WM task. Conclusions: SWP is a valid metric to characterize the frequency-specific behavior of resting state networks.status: accepte

    A Gravity-Compensated Upper-Limb Exoskeleton for Functional Rehabilitation of the Shoulder Complex

    No full text
    In the last decade, several exoskeletons for shoulder rehabilitation have been presented in the literature. Most of these devices focus on the shoulder complex and limit the normal mobility of the rest of the body, forcing the patient into a fixed standing or sitting position. Nevertheless, this severely limits the range of activities that can potentially be simulated during the rehabilitation, preventing the execution of occupational therapy which involves the execution of tasks based on activities of daily living (ADLs). These tasks involve different muscular groups and whole-body movements, such as, e.g., picking up objects from the ground. To enable whole-body functional rehabilitation, the challenge is to shift the paradigm of robotic rehabilitation towards machines that can enable wide workspaces and high mobility. In this perspective, here we present Float: an upper-limb exoskeleton designed to promote and accelerate the motor and functional recovery of the shoulder joint complex following post-traumatic or post-surgical injuries. Indeed, Float allows the patient to move freely in a very large workspace. The key component that enables this is a passive polyarticulated arm which supports the total exoskeleton weight and allows the patient to move freely in space, empowering rehabilitation through a deeper interaction with the surrounding environment. A characterization of the reachable workspace of both the exoskeleton and the polyarticulated passive arm is presented. These results support the conclusion that a patient wearing Float can perform a wide variety of ADLs without bearing its weight
    corecore